open EHR.org

What it is and Why it matters v0.9

Thomas Beale CTO Ocean Informatics, Researcher, CHIME, UCL

The Speaker

- Engineering background
- In Health Informatics since GEHR (1994)
- Active in CEN since 2001
- Active in HL7 since 2000
- Co-founder of openEHR

© 2005 Ocean Informatics and University College London 150 2

* * * Programme * * *

- What is *open*EHR?
- The community and getting involved
- openEHR deliverables, products, systems
- openEHR in use
- Technical basis
- Archetypes, templates and 2-level modelling
- EHR communication
- openEHR, CEN, HL7

The openEHR Foundation

- *openEHR*: a non-profit organisation founded by UCL & Ocean Informatics (legally in the UK)
- Mission: to improve clinical health care via 1) better EHR architectures 2) interoperability between systems and applications 3) clinician empowerment
- Funding: currently subsidised by University **College London and Ocean Informatics; future:** donations + business model based on conformance testing and archetype development
- Jurisdiction: no official jurisdiction; aims to be appropriate for all types of health care, all localities, all languages © 2005 Ocean Informatics and

University College London

The openEHR Foundation - aims

- Requirements: research, develop and publish EHR requirements
- Architecture: research, develop and publish open, modular architecture for EHR
- Implementation: via the community, create open source implementations to validate approach, providing library of interoperable components
- Clinical knowledge: to promote and develop clinical modelling approach, tools and models which empower users

Patient-centred shared care

*open*EHR two types of activities

*open*EHR – Governing Board

*open*EHR – Architecture and Clinical Review Boards

*open*EHR – development projects

© 2005 Ocean Informatics and University College London 5072

*open*EHR – publication, dessemination, education

* * * Programme * * *

- What is *open*EHR?
- The community and getting involved
- openEHR deliverables, products, systems
- openEHR in use
- Technical basis
- Archetypes, templates and 2-level modelling
- EHR communication
- openEHR, CEN, HL7

The openEHR Community

- Who are its members?
 - 576 members, 60 countries (5/May/2005)
- What levels of involvement are there?
 - Initial: become a member on the website
 - Discussion: subscribe to discussion lists announce, technical, clinical
- Technical stream
 - Experiment: subscribe to implementors' discussion list
 - Use software or specs and submit Problem Reports (PRs) (plone server)
 - Join a project: become a developer (see project pages), work with Change Requests (CRs) & submit changes

The openEHR Community

• Clinical stream

Discuss: subscribe to openehr-clinical list
Use archetype tools and share archetypes
Join a project: clinical projects are starting...

* * * Programme * * *

- What is *open*EHR?
- The community and getting involved
- openEHR deliverables, products, systems
- openEHR in use
- Technical basis
- Archetypes, templates and 2-level modelling
- EHR communication
- openEHR, CEN, HL7

openEHR Projects and Products

openEHR Technical projects

openEHR Clinical projects

© 2005 Ocean Informatics and University College London 15 Act

Development Process

- Software engineering process:
 - Requirements
 - Analysis & design
 - Implementation, V&V, deployment
- Change process:
 - Identified project teams
 - Change Management plan (see website)
 - All changes documented with Change Requests
 - All problems reported with Problem Reports
 - Reference projects use ARB

openEHR Products: free, open source

- Archetypes
 - ADL reference parser (.net, java)
 - Workbench
 - Ocean archetype editor
 - Browsing and repository environment (coming)
- Java EHR system (hibernate, MySQL, Spring...)
 - EHR service
 - Demographics service
 - Archetype service
 - Terminology access service
 - Application component
 - Test data & archetypes
 - Basic GUI

The openEHR website

- Main server
 - MacOS server
 - Apache
- Software Configuration Management
 - Currently BitKeeper
 - May migrate to Subversion
- Zope/Plone server
 - Problem Reports
 - Change requests
- 5 Discussion lists

* * * Programme * * *

- What is *open*EHR?
- The community and getting involved
- openEHR deliverables, products, systems
- openEHR in use
- Technical basis
- Archetypes, templates and 2-level modelling
- EHR communication
- openEHR, CEN, HL7

Who is using it?

- Australia
 - National clinical modelling project
 - National e-Health programme HealthConnect
 - Existing \$3m diabetic system in Brisbane (1000 patients, 60 physicians)
 - Ocean Informatics
- UK/UCL
 - Clef (MRC project) cancer research database system
 - UCL open source development with a-code.se
- Europe
 - CEN standard EN13606-part 2 (archetype model)
 - Various companies (nl, se, es, ...)
 - 5 EU Framework 6 proposals specified openEHR
- Americas: various iversity Congo goldany, Brazil etc

Who is researching it?

- University College London
- University of South Australia
- University of Central Queensland
- University of Manchester, UK
- University of Seville, Spain
- University of Moratuwa, Sri Lanka
- Mayo Clinic, Rochester, US

* * * Programme * * *

- What is *open*EHR?
- The community and getting involved
- openEHR deliverables, products, systems
- openEHR in use
- Technical basis
- Archetypes, templates and 2-level modelling
- EHR communication
- openEHR, CEN, HL7

Technical Methodology

- 15 years of research into the EHR
- Using lessons from at least 10 EU projects
- Requirements-based
- Engineering design approach (small, focussed team, reviews, prototypes)
- Ongoing implementation
- Software configuration and release management

openEHR research pedigree

-1992

2004

Good European Health Record: requirements and EHR architecture

EHCR SupA: revised requirements and architecture

Synapses: FHR and Clinical Object Dictionary

<u>SynEx</u>: middleware component architecture

<u>Medicate</u>: remote asthma monitoring and alerts

Good Electronic Health Record

Formal Archetype approach

<u>GPGC projects</u> (1) EHR kernel services (2) legacy data transformation (3) diabetes extraction and merge

<u>6WINIT</u>: wireless IPv6

mNET: wireless demonstrator

University College London

Technical Principles

- 1. <u>Componentised</u> into areas such as demographics, workflow, ehr
 - Why? Same principle as low-coupled software
- 2. Separation of viewpoints RM/ODP EV, IV, CV
 - Why? Separates information (fine-grained) and service (coarse-grained) semantics
 - Don't hardwire policies & bus process into the software
- 3. Ontologically layered
 - Why? Separates progressively more specific & changeable concepts into modular layers
 - Allows division of what is hard-wired into software and what is knowledge available at runtime

1. components

1 1 1 1

TAR THE & ADDRESS

3. Ontological Layering

Level 4 – variant local & use-specific

Level 3 – variant re-usable domain concepts

Level 2 – invariant domain concepts

Level 1 – data-sharing (persistence/exchange)

Level 0 – foundational

use context-specific concepts, e.g. "asthma note", "ante-natal exam"

atomic domain concepts, e.g. "lab result", "patient", "apgar score", "BP measurement", ...

base ontological commitments of domain, e.g. "observation", "subject-of-care", "protocol"...

minimal ontological commitments – sufficient for "recording" and "sharing", e.g. "composition", "committer", "attestation"...

Object meta-model (objects, attributes etc) built-in data types,

Level 1 – Persistence & Exchange IM

- The job of the Persistence IM is to:
 - be a faithful in-situ representation of data for sharing by applications
- The job of the Exchange IM is to:
 - be an LCD standard for sharing data by systems
 - provide semantics which are invariant across all IMs: i.e. audit, identity, attestation, basic containment
- Relationship to Domain Base CM:

Domain Base CM
Data must be 100% bidirectionally convertible (maybe via persistence IM)
Must support archetype meta-data
Persistence IM
Exchange IM
University College London

Level 1 – data types

- Only data types needed are those required for structural attributes:
 - Date_time (i.e. concept of a timestamp)
 - Strings
 - Information item identifiers
 - Boolean
 - Uri
 - Coded text
- I.e. basic ISO 11404 set + coded text
- No other data types needed at this level

Level 2 - Domain Base Concept Model

- The job of this model is to:
 - define base ontological commitments for
 - archetypes else archetypes not definable
 - interface to persistence/exchange IMs
 - therefore define as OO model (in UML)
- Example ontological content:

archetypes

Domain Base CM

Base ontology

- Observation (from *open*EHR):
 - Data/state/protocol split
 - Data: History<Structure>
 - Structures: List, Table, Tree, Single

Domain Base CM - characteristics

- This is the model whose class and attribute names you can use in an archetype
- It also defines the base ontology for archetypes
- Concepts must be invariant for the entire domain
- Hence things like Observation, Evaluation etc but not "substance administration", "invoice"...
- This level must be standardised and agreed for archetypes to be sharable
- It can be sourced from existing IMs, and can grow (slightly) in time...
Level 2 – data types

- This level needs data types which are subtypes of Data_value, and which satisfy clinical needs:
 - Date_time, Date, Time, Duration
 - Text (w. language)
 - Coded text
 - Quantity, ratio, range, count
 - Real world identifiers
 - Bistate (yes/no, true/false, ...)
 - State
 - Ordinal
 - Time specification
 - Uri
 - Multimedia

Level 1/2 - 3 models really needed?

- These 3 "models" stand for 3 distinct functions which are needed in the computational framework
- They could be separate models, but the functions could also be satisfied by one or two information models only
- 3 models will occur with archetypes based on *open*EHR-like IM; persistence in private form; exchange in 13606

Domain Base CM

1 model will occur with e.g. native *open*EHR or G-EPJ systems talking to each other

Persistence IM Exchange IM cear ith open EHR + 13606 University College London

Domain Base CM - candidates

- Pieces of particular cleanly defined information models
- Concepts must be *completely invariant* for the entire domain
- What makes sense in this model is what makes sense in an archetype editor

Defining the Domain Base CM

- A base concept model for archetypes needs concepts like those in *open*EHR; potentially some in G-EPJ and ENV13940; some ontological content retrievable from HL7 RIM and CDA
- Initial candidate = core of *open*EHR with simplified names; maybe some of G-EPJ both these models have been designed for archetyping
- Further minor *open*EHR/EN13606-1 alignment required to guarantee safe 100% mapping
- Data types should be consistent throughout all models!!!!

The functions of this level are to:

•

- connect to data by defining clinical models, in terms of Domain Base Concept Model concepts
- connect to knowledge by binding to terminology
- form the basis for querying and other semantically meaningful data-processing
- Must be separate from level 2 to enable maintainable software and self-adapting systems to be constructed

Level 4 – Templates and the GUI

Archetypes act as re-usable components in locally defined semantic templates...

They are also a basis for defining re-usable screen elements...

which eventually appear in semi-automatically engineered screen forms

EHR Model Comparison

University College London

openEHR Modelling

- Layered
- Data types and data structures provide building blocks
- Uses basic scientific information types for Entries
- Includes model of versions and change-sets to handle input errors, multiple simultaneous modifying users, medico-legal needs, historical process analysis
- Archetype-enabled

What is in the Reference Model?

EHR

Folders

Compositions

Sections

Framework

Entries

Clusters

Elements

Data values

The electronic health record for one person

High-level organisation of the EHR e.g. per episode, per clinical speciality

Set of entries committed at one date/time e.g. progress note, report, letter, test result

Clinical headings reflecting the workflow and consultation/reasoning process

Clinical "statements" about Observations, Evaluations, and Instructions

Compound entries e.g. blood pressure, full blood count

Element entries e.g. reason for encounter, body weight

e.g. Coded terms from term sets, measurements with units

RM Overview

How Contributions Work

The openEHR Entry Types

Entry

Structures

© 2005 Ocean Informatics and University College London To aller

* * * Programme * * *

- What is *open*EHR?
- The community and getting involved
- openEHR deliverables, products, systems
- openEHR in use
- Technical basis
- Archetypes, templates and 2-level modelling
- EHR communication
- openEHR, CEN, HL7

The vision of archetypes

- Single-source models for:
 - Representing clinical concepts
 - Intelligent creation and processing of data
 - Defining behaviour of GUI screens
 - Saying how to use terminology
 - Message definitions, where messages needed

What Archetypes Are Used For

- Implementing 2-level modelling
- Connecting terminology to data
- Formally expressing models of domain concepts as modelled by clinicians
- Validating user input
- Providing the basis for semantic querying
- Providing a basis for dealing with legacy data and messages, via legacy archetypes
- Providing a basis for data conversion, using archetype to archetype conversion

How they improve interoperability

How the software is designed

Information models

Instance/class conformance

terminologies

Archetype Language

Instance/class conformance

Semantic conformance

Information

Archetypes

How archetypes are made and shared

Templates and archetypes at runtime

What the data look like

Template -slots filled -default values -constraints narrowed -terminologie(s) chosen -language chosen

What an archetype looks like

- (editor) 돈
- (HTML)
- (workbench)

- Formal basis:
 - Constraint part corresponds to an F-logic query
 - Ontology part acts as a binding to terminologies

* * * Programme * * *

- What is *open*EHR?
- The community and getting involved
- openEHR deliverables, products, systems
- openEHR in use
- Technical basis
- Archetypes and 2-level modelling
- EHR communication
- openEHR, CEN, HL7

Various types of comm. needed

TAR THE & ADDRESS

Communication Methods

- Via EN13606 (will be built-in)
- Via *open*EHR Extracts (fewer transformations)
- Future: via *open*EHR messages for pathology and imaging (based directly on archetypes)
- In XML/SOAP, .Net, Corba...

Distributed Architectures

- Consolidated federation is better than pure virtual federation
 - openEHR repository at each node acts as smart cache
 - Legacy conversion at local points using legacy archetypes, <u>at data capture time</u>
 - Main backbone of system is *open*EHR, with common security and communication between nodes
 - Avoids problems of differing security, query, performance etc of different systems
- Each major node could be e.g. J2EE application server supporting thick client and web client

* * * Programme * * *

- What is *open*EHR?
- The community and getting involved
- openEHR deliverables, products, systems
- openEHR in use
- Technical basis
- Archetypes and 2-level modelling
- EHR communication
- openEHR, CEN, HL7

Standards today

Content-dependent

Content-independent

Level 4 – domain-variant local & use-specific

Level 3 – domain-variant re-usable concepts

> Level 2 – invariant Domain concepts

Level 1 – data-sharing (persistence/exchange) WHO ???? – basic archetypes emerging – national archetypes CEN EN13940 – continuity of care CEN 13606-2 – categorial structures Corbamed – TQS

Denmark – G-EPJ

openEHR – EHR IM

Corbamed – PIDS

UN/CEFACT – ebXML-8

openEHR – common, DT, DS IMs CEN 13606-1 – EHR communication ISO ???? – clinical data types

HL7v2 EDIFACT openEHR – ADL

ISO 11404 – general purpose data ISO 8601 – date/time © 2005 Ocean Informatics and

Relation to Standards – EN13606

- openEHR developers have been active in CEN for 4 years
- 95% compatible with EN13606-1
- *open*EHR archetype model used as EN13606-2
- *open*EHR will implement the specification (using *open*EHR data types)
- => all openEHR systems will be EN13606 compliant
- Driving new work item for new CEN standard on archetype tools, environment, and base ontology model

EN13606_Entry proposal

- New EN13606_Entry class models:
 - CEN EN13606 Entry class itself faithfully
 - Using openEHR Cluster/Element (same as CEN)
 - And openEHR data types
- Conversion rules defined <u>within</u> openEHR
- And implemented and tested in real software

Legacy Data Examples

Relation to Standards – HL7

- HL7v2 bridges are being built in Australia
- *open*EHR developers and community members have been active at HL7 for 5 years

Some success in harmonising CDA

- Connection with HL7v3 more difficult:
 - HL7 models don't obey good ontological principles
 - HL7 methodology breaks some OO rules
 - RIM too small, uses many codes to control instances; most codes not relevant to EHR (or messages?)
 - Poor separation of domain concepts and software models

Other Standards

- ISO TS 18308 EHRRA requirements -~conformant
- *open*EHR driving new ISO data types work item
- Active in Australian standards development
openEHR is dedicated to...

- Being driven by clinician and patient needs
- Specifications that compile, not just print.
- Implementation, not just explanation.
- Being the test bed for health IT standards. If it doesn't work, we'll find out!
- Open & free specifications and source code
- Its community

© 2005 Ocean Informatics and University College London